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Introduction

Problem description
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Figure 1: SR enhancement through
TPC and CST adjustment
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Context - Use case

Dense IEEE 802.11 WLANSs
e Unplanned (chaotic deployments)
o Decentralized (local information only)
o Unpredictable interactions between overlapping networks
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Figure 2: TGax residential scenario. Image retrieved from [1].
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Introduction
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Potential Solution

Online Learning

© Uncertainty — no information exchange

© Adversarial setting — the reward is influenced by the
environment

@ Complexity and delay-sensitive — need to find an
approximation of the optimal solution, rather than computing it

Effect
Action Parallel Collisions probability Energy
Transmissions Data Rate (by hidden node) Consumption
T Power 1 i 1 i
| Power T 1 T {
T CST T - i T
| CST 1 - { ¥

Table 1: Effects of TPC and CST adjustment
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Introduction Related Work

Related Work

Surveys

e Cognitive radio [1]
o Wireless Sensor Networks (WSN) [2, 3]
e Ad-hoc networks [4]

Related to this problem

e Q-learning for channel selection [5-8] and power adjustment [9, 10]
e MABs to Power control in D2D networks [11, 12]

e MABs to DCA & TPC [13]

e Structured MABs for combinatorial optimization problems [14, 15]
e MABEs for decentralized channel access [16, 17]
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System Model

The Multi-Armed Bandit problem

A game in which the following steps are repeated in ¢t =1,2,...,T"

© The environment fixes an assignment of rewards r,; for each
action a € [K] ¥ {1,2,..., K},
@ the learner chooses action a; € [K],

@ the learner obtains and observes reward 7, ¢
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System Model

MABSs application into Decentralized WLANs

Use case

o Adversarial setting (N WLANSs make actions simultaneously)
o Actions consist in {Channel, Transmit Power, CST} combinations
@ The reward is set as a function of the WLANs performance

Throughput
Delay
Packets sent vs packets lost
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Simulation Tools

Analytical Models

e Continuous Time Markov Networks (CTMNs) [18]

o Matlab simulator for building CTMNs:
https://github.com/sergiobarra/SFCTMN

WLAN, WLAN, WLAN,
AR B, AP
f 9 N Ti=LY pin, 7
\ s€S
‘\ I\ /
(a) Scenario (b) CTMN

e Bianchi’s model for throughput calculation based on the
Distributed Coordination Function (DCF) [19]
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Simulation Tools

Simulation Tools

IEEE 802.11ax-based network simulator
e Open source: https://github.com/wn-upf/Komondor

o Current tools lack of flexibility for including novel mechanisms in
WLANSs

e Programmed to include ML-based agents
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Conference paper

Presented at PIMRC’17 (Montreal)

[20]

Goal: to improve spectral efficiency

in adversarial WNs

Method: a stateless version of

Q-learning
Conclusions:

o Close-to-optimal solutions can be

achieved

o Competitiveness involves the

non-existence of a Nash
Equilibrium

e Strong throughput fluctuations
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https://ieeexplore.ieee.org/document/8292321/
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Journal paper (I)

@ Submitted to Ad-hoc Networks
[21]

Goal: to improve spectral
efficiency in adversarial WNs

Method: Multi-Armed
Bandits (several algorithms)

e Conclusions:

e Collaborative behavior even
if acting selfishly

o Trade-off between variability
and performance

e Poor performance in
e-greedy and EXP3

e Good results in UCB and
Thompson sampling

ilhelmi (UPF)
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Figure 5: Histogram of the avg.
throughput (100 repetitions of 10,000
iterations)
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Research Activity

Journal paper (II)

e Submitted to JNCA [22]

o Goal: to show the major challenges and opportunities of applying
ML to the SR problem

Method: MABs
Conclusions:

e Importance of designing the reward
o Selfish vs Environment-aware rewards
e Learning in presence of asymmetries
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Research Activity

Ongoing work

Thesis

e Overview of IEEE 802.11ax Spatial Reuse
e Learning Spatial Reuse in IEEE 802.11ax WLANSs

o ML-based architecture for WLANSs

o Rough idea: flexible architecture able to offload tasks to different
layers
e Focus on the existing mechanisms to aid the ML-based operation

Other projects

e Contributions to FG-ML5G (ITU)

o Fon
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https://www.itu.int/en/ITU-T/focusgroups/ml5g/Pages/default.aspx

Future Work

Candidate research lines

o Improved decentralized learning: inference

e Distributed learning

o Centralized learning

=

Legacy
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Any questions?

Francesc Wilhelmi
francisco.wilhelmi@Qupf.edu
PhD student
Department of Communication and Information Technologies
Universitat Pompeu Fabra (Barcelona)
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Backup: Reinforcement Learning

= —
Goal state Esward action
An agent attempts to learn a policy : (e

given the observations it does. The e
goal is to maximize the expected

Environment

future cumulative reward. M={S, AR,T}
e No supervisor (only reward o S: set of states
signal) o A: set of actions

e Delayed feedback & sequentiality o R: set of rewards

o Actions affect the environment

e 7 transitions
probabilities
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Backup: Multi-Armed Bandits

Frames the exploration/exploitation
trade-off. The hidden reward
distributions must be learned while
maximizing the gains.

o Action-selection strategies to cope 5“
with hidden distributions v
(e-greedy, EXP3, UCB...) .,/;' E’! %
e Several variants (contextual, 4\7\51& :
adversarial, stochastic, ad
restless. . .) ! R

e States-independent

o Reward becomes regret:
n : n
R, = Zt:l lt,It — Mc g Zt:l lt,i
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Backup: Thompson sampling

Thompson sampling [19] is a Bayesian action-selection technique

o It constructs a probabilistic model of the rewards and assumes a
prior distribution of the parameters of said model

o Keeps track of the posterior distribution of the rewards, and pulls
arms randomly in a way that the drawing probability of each arm
matches the probability of the particular arm being optimal

o For the sake of practicality, we aim to apply Thompson sampling
using a Gaussian model for the rewards with a standard Gaussian
prior as suggested in [20].

e In adversarial wireless networks, it has been shown to perform
better than using the magnitude of the reward [9]
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Backup: Applied Thompson sampling

Algorithm 1: Implementation of Multi-Armed Bandits (Thompson sampling) in a WN

1 Function Thompson Sampling (SNR, A);
Input :SNR: information about the Signal-to-Noise Ratio received at the STA
A: set of possible actions in {ay,...,ax}
2 initialize: ¢ = 0, for each arm a, € A, set 7y =0 and ny =0
3 while active do

4 For each arm ay, € A, sample 8;(¢t) from normal distribution N (, nklj)
5 Play arm a; = argmax 6(t)
k=1,..,K

Observe the throughput experienced I't
Compute the reward 74 = %‘:, where I'* = Blog,(1 + SNR)

Tr,tNk,e+Tk,t
Ng,t+2

Nkt ¢ Nk + 1
10 t+—t+1
11 end

f'k:,t —

© o N o
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