Enhancing Spectral Efficiency in Dense Wireless Networks through Learning

Francesc Wilhelmi

Supervisor UNAM: J. Gómez Supervisors UPF: B. Bellalta, A. Jonsson, C. Cano

31/08/18

Table of contents

- Introduction
- Related Work
- 3 System Model
- Simulation Tools
- Research Activity

Outline

Introduction

- Introduction
- 2 Related Worl
- 3 System Mode
- 4 Simulation Tools
- 6 Research Activity

Problem description

Introduction

Spatial Reuse (SR) enhancement in dense Wireless Networks

- Transmit Power Control (TPC)
- Carrier Sense Threshold (CST) adjustment
- Dynamic Channel Selection (DCA)

Figure 1: SR enhancement through TPC and CST adjustment

Context - Use case

Dense IEEE 802.11 WLANs

- Unplanned (chaotic deployments)
- Decentralized (local information only)
- Unpredictable interactions between overlapping networks

Figure 2: TGax residential scenario. Image retrieved from [1].

Potential Solution

Online Learning

Introduction

- Uncertainty \rightarrow **no** information exchange
- ② Adversarial setting → the reward is influenced by the environment
- 3 Complexity and delay-sensitive → need to find an approximation of the optimal solution, rather than computing it

	Effect			
Action	Parallel	Data Rate	Collisions probability	Energy
	Transmissions	Data Rate	(by hidden node)	Consumption
↑ Power	+	†	\	↑
↓ Power	1	+	↑	+
$\uparrow \text{CST}$	1	-	†	^*
$\downarrow \text{CST}$	1	-	<u> </u>	*

Table 1: Effects of TPC and CST adjustment

Outline

- 1 Introduction
- 2 Related Work
- 3 System Model
- 4 Simulation Tools
- 6 Research Activity

Related Work

Surveys

- Cognitive radio [1]
- Wireless Sensor Networks (WSN) [2, 3]
- Ad-hoc networks [4]

Related to this problem

- Q-learning for channel selection [5-8] and power adjustment [9, 10]
- MABs to Power control in D2D networks [11, 12]
- MABs to DCA & TPC [13]
- Structured MABs for combinatorial optimization problems [14, 15]
- MABs for decentralized channel access [16, 17]

Outline

- Introduction
- 2 Related Work
- 3 System Model
- 4 Simulation Tools
- Research Activity

The Multi-Armed Bandit problem

Formal definition

A game in which the following steps are repeated in $t = 1, 2, \dots, T$:

System Model

- The environment fixes an assignment of rewards $r_{a,t}$ for each action $a \in [K] \stackrel{\text{def}}{=} \{1, 2, \dots, K\},$
- the learner chooses action $a_t \in [K]$,
- the learner obtains and observes reward $r_{a_t,t}$

Use case

- Adversarial setting (N WLANs make actions simultaneously)
- Actions consist in {Channel, Transmit Power, CST} combinations
- The reward is set as a function of the WLANs performance
 - Throughput
 - Delay
 - Packets sent vs packets lost
 - ...

Outline

- Introduction
- 2 Related Work
- 3 System Mode
- 4 Simulation Tools
- 6 Research Activity

- Continuous Time Markov Networks (CTMNs) [18]
 - Matlab simulator for building CTMNs: https://github.com/sergiobarra/SFCTMN

• Bianchi's model for throughput calculation based on the Distributed Coordination Function (DCF) [19]

Simulation Tools

IEEE 802.11ax-based network simulator

- Open source: https://github.com/wn-upf/Komondor
- Current tools lack of flexibility for including novel mechanisms in WLANs
- Programmed to include ML-based agents

Outline

- Introduction
- 2 Related Work
- 3 System Model
- 4 Simulation Tools
- Research Activity

Conference paper

- Presented at PIMRC'17 (Montreal) [20]
- Goal: to improve spectral efficiency in adversarial WNs
- Method: a stateless version of Q-learning
- Conclusions:
 - Close-to-optimal solutions can be achieved
 - Competitiveness involves the non-existence of a Nash Equilibrium
 - Strong throughput fluctuations

(a) Scenario

(b) Results (100 repetitions of 1.000 iterations)

Journal paper (I)

- Submitted to Ad-hoc Networks [21]
- Goal: to improve spectral efficiency in adversarial WNs
- Method: Multi-Armed Bandits (several algorithms)
- Conclusions:
 - Collaborative behavior even if acting selfishly
 - Trade-off between variability and performance
 - Poor performance in ε -greedy and EXP3
 - Good results in UCB and Thompson sampling

Figure 5: Histogram of the avg. throughput (100 repetitions of 10,000 iterations)

(c) 6 WNs

(c) 8 WNs

Journal paper (II)

- Submitted to JNCA [22]
- Goal: to show the major challenges and opportunities of applying ML to the SR problem
- Method: MABs
- Conclusions:
 - Importance of designing the reward
 - Selfish vs Environment-aware rewards
 - Learning in presence of asymmetries

Ongoing work

Thesis

- Overview of IEEE 802.11ax Spatial Reuse
- Learning Spatial Reuse in IEEE 802.11ax WLANs
- ML-based architecture for WLANs
 - Rough idea: flexible architecture able to offload tasks to different layers
 - Focus on the existing mechanisms to aid the ML-based operation

Other projects

- Contributions to FG-ML5G (ITU)
- Fon

Future Work

Candidate research lines

- Improved decentralized learning: inference
- Distributed learning
- Centralized learning

Any questions?

Francesc Wilhelmi francisco.wilhelmi@upf.edu PhD student

Department of Communication and Information Technologies Universitat Pompeu Fabra (Barcelona)

- [1] Afagui, M. Shahwaiz, et al. "Evaluation of dynamic sensitivity control algorithm for IEEE 802.11 ax." Wireless Communications and Networking Conference (WCNC), 2015 IEEE, IEEE, 2015.
- [2] BKASSINY, Mario; LI, Yang; JAYAWEERA, Sudharman K. A survey on machine-learning techniques in cognitive radios. IEEE Communications Surveys & Tutorials, 2013, vol. 15, no 3, p. 1136-1159.
- ALSHEIKH, Mohammad Abu, et al. Machine learning in wireless sensor networks: Algorithms, strategies, and applications. IEEE Communications Surveys & Tutorials, 2014, vol. 16, no 4, p. 1996-2018.
- DI. Ma: JOO. Er Meng. A survey of machine learning in wireless sensor netoworks from networking and application perspectives. En Information, Communications & Signal Processing, 2007 6th International Conference on, IEEE, 2007, p. 1-5.
- [5] FORSTER, Anna. Machine learning techniques applied to wireless ad-hoc networks: Guide and survey. En Intelligent Sensors, Sensor Networks and Information, 2007. ISSNIP 2007. 3rd International Conference on. IEEE, 2007. p. 365-370.
- [6] Nie, J., & Haykin, S. (1999). A Q-learning-based dynamic channel assignment technique for mobile communication systems. IEEE Transactions on Vehicular Technology, 48(5), 1676-1687.
- Li, H. (2009, October). Multi-agent Q-learning of channel selection in multi-user cognitive radio systems: A two by two case, In Systems, Man and Cybernetics, 2009, SMC 2009, IEEE International Conference on (pp. 1893-1898). IEEE.
- Sallent, O., Pérez-Romero, J., Ferrús, R., & Agustí, R. (2015, June). Learning-based coexistence for LTE operation in unlicensed bands. In Communication Workshop (ICCW), 2015 IEEE International Conference on (pp. 2307-2313). IEEE.
- [9] Rupasinghe, N., & Güvenc, İ. (2015, March). Reinforcement learning for licensed-assisted access of LTE in the unlicensed spectrum. In Wireless Communications and Networking Conference (WCNC), 2015 IEEE (pd. 1279-1284), IEEE,

- [10] Bennis, M., & Niyato, D. (2010, December). A Q-learning based approach to interference avoidance in self-organized femtocell networks. In GLOBECOM Workshops (GC Wkshps), 2010 IEEE (pp. 706-710). IEEE.
- Bennis, M., Guruacharya, S., & Niyato, D. (2011, December). Distributed learning strategies for interference mitigation in femtocell networks. In Global Telecommunications Conference (GLOBECOM 2011), 2011 IEEE (pp. 1-5). IEEE.
- [12]Maghsudi, S., & Stańczak, S. (2015). Joint channel selection and power control in infrastructureless wireless networks: A multiplayer multiarmed bandit framework. IEEE Transactions on Vehicular Technology, 64(10), 4565-4578.
- [13] Maghsudi, S., & Stańczak, S. (2015). Channel selection for network-assisted D2D communication via no-regret bandit learning with calibrated forecasting. IEEE Transactions on Wireless Communications, 14(3), 1309-1322.
- [14] Wilhelmi, F., Cano, C., Neu, G., Bellalta, B., Jonsson, A., & Barrachina-Muñoz, S. (2017). Collaborative Spatial Reuse in Wireless Networks via Selfish Multi-Armed Bandits. arXiv preprint arXiv:1710.11403.
- Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking (TON), 20(5), 1466-1478.
- [16] Combes, R., & Proutiere, A. (2015). Dynamic rate and channel selection in cognitive radio systems. IEEE Journal on Selected Areas in Communications, 33(5), 910-921.

References

- [17] Liu, K., & Zhao, Q. (2010). Distributed learning in multi-armed bandit with multiple players. IEEE Transactions on Signal Processing, 58(11), 5667-5681.
- [18] Bellalta, B., Zocca, A., Cano, C., Checco, A., Barcelo, J., & Vinel, A. (2014). Throughput analysis in CSMA/CA networks using continuous time Markov networks: a tutorial. In Wireless Networking for Moving Objects (pp. 115-133). Springer, Cham.
- [19] Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on selected areas in communications, 18(3), 535-547.
- [20] Wilhelmi, F., Bellalta, B., Cano, C., & Jonsson, A. (2017, October). Implications of decentralized Q-learning resource allocation in wireless networks. In Personal, Indoor, and Mobile Radio Communications (PIMRC), 2017 IEEE 28th Annual International Symposium on (pp. 1-5). IEEE.
- [21] Wilhelmi, F., Cano, C., Neu, G., Bellalta, B., Jonsson, A., & Barrachina-Muñoz, S. (2017). Collaborative Spatial Reuse in Wireless Networks via Selfish Multi-Armed Bandits. arXiv preprint arXiv:1710.11403.
- [22] Wilhelmi, F., Barrachina-Muñoz, S., Cano, C., Bellalta, B., Jonsson, A., & Neu, G. (2018). Potential and Pitfalls of Multi-Armed Bandits for Decentralized Spatial Reuse in WLANs. arXiv preprint arXiv:1805.11083.

Goal

An agent attempts to learn a policy given the observations it does. The goal is to maximize the expected future cumulative reward.

- No supervisor (only reward signal)
- Delayed feedback & sequentiality
- Actions affect the environment

$$\mathcal{M} = \{\mathcal{S}, \mathcal{A}, \mathcal{R}, \mathcal{T}\}$$

- \mathcal{S} : set of states
- A: set of actions
- \mathcal{R} : set of rewards
- \bullet \mathcal{T} : transitions probabilities

Backup: Multi-Armed Bandits

Frames the exploration/exploitation trade-off. The hidden reward distributions must be learned while maximizing the gains.

- Action-selection strategies to cope with hidden distributions (ε -greedy, EXP3, UCB...)
- Several variants (contextual, adversarial, stochastic, restless...)
- States-independent
- Reward becomes regret: $R_n = \sum_{t=1}^n l_{t,I_t} - \min_{i \in K} \sum_{t=1}^n l_{t,i}$

Thompson sampling [19] is a Bayesian action-selection technique

- It constructs a probabilistic model of the rewards and assumes a prior distribution of the parameters of said model
- Keeps track of the posterior distribution of the rewards, and pulls arms randomly in a way that the drawing probability of each arm matches the probability of the particular arm being optimal
- For the sake of practicality, we aim to apply Thompson sampling using a Gaussian model for the rewards with a standard Gaussian prior as suggested in [20].
- In adversarial wireless networks, it has been shown to perform better than using the magnitude of the reward [9]

Algorithm 1: Implementation of Multi-Armed Bandits (Thompson sampling) in a WN

- 1 Function Thompson Sampling (SNR, A);
 - Input: SNR: information about the Signal-to-Noise Ratio received at the STA
 - \mathcal{A} : set of possible actions in $\{a_1, ..., a_K\}$
- **2** initialize: t=0, for each arm $a_k \in \mathcal{A}$, set $\hat{r}_k=0$ and $n_k=0$
- з while active do
- 4 | For each arm $a_k \in \mathcal{A}$, sample $\theta_k(t)$ from normal distribution $\mathcal{N}(\hat{r}_k, \frac{1}{n_k+1})$
- 5 Play arm $a_k = \underset{k=1,...,K}{\operatorname{argmax}} \theta_k(t)$
- 6 Observe the throughput experienced Γ_t
- 7 Compute the reward $r_{k,t} = \frac{\Gamma_t}{\Gamma^*}$, where $\Gamma^* = B \log_2(1 + \text{SNR})$
- 8 $\hat{r}_{k,t} \leftarrow rac{\hat{r}_{k,t}n_{k,t}+r_{k,t}}{n_{k,t}+2}$
- 9 $n_{k,t} \leftarrow n_{k,t} + 1$
- 10 $t \leftarrow t+1$
- 11 end