ITUEvents

ITU-ML5G-PS-013: Improving the capacity of IEEE 802.11 WLANs through Machine Learning 10 July 2020 (Universitat Pompeu Fabra, Barcelona)

ITU AI/ML in 5G Challenge

Applying machine learning in communication networks

ai5gchallenge@itu.int

Sponsors Organizer

The UPF

Eight disciplines spread across three campuses in Barcelona (Spain):

- Health and life sciences
- Political and social sciences
- Communication
- Law
- Economics and business
- Engineering and information and communication technologies
- Humanities
- Translation and language sciences

Slide 4 of 24

The problem statement in a nutshell

- Channel Bonding (CB) problem in IEEE 802.11 WLANs:
 - All the information here: https://www.upf.edu/web/wnrg/ai_challenge
 - Dataset available here: <u>https://zenodo.org/record/3879458 .Xwa7hJMzbyg</u>
- Timeline:
 - Registration: 31 July 2020
 - Global Round duration: June October 2020
 - Deadline to submit a solution: 15 September 2020
 - Announcement of the winners: October 2020
- How to participate?

1. If you don't have an ITU account, please follow the <u>guidance</u> to create one for challenge registration.

2. <u>Register</u> on ITU AI/ML in 5G challenge website with your ITU account.

3. <u>Fill out the ITU AI/ML in 5G Challenge Participants Survey</u> to select problem statement **ITU-ML5G-PS-013**. You can enroll as a team with 1-4 members.

4. Begin to work on this problem and submit your results. We will begin to accept submissions from **July 31, 2020** and the submission deadline is **September 15th, 2020**.

) Channel Bonding in IEEE 802.11 WLANs

Slide 6 of 24

Background in Channel Bonding

- Firstly introduced in 802.11n
- Further developed in 11ac, 11ax, 11be...
- Improve capacity by bonding frequency channels
- Up to 160 MHz bond
- Some references [1-2]

Source: <u>https://www.sourceonetechnology.com/802-11ac-wireless-</u> <u>channel-bonding-mimo-spatial-streams-and-beamforming/</u>

[1] Barrachina-Muñoz, S., Wilhelmi, F., & Bellalta, B. (2019). Dynamic channel bonding in spatially distributed high-density WLANs. *IEEE Transactions on Mobile Computing*.

[2] Barrachina-Muñoz, S., Wilhelmi, F., & Bellalta, B. (2019). To overlap or not to overlap: Enabling channel bonding in high-density WLANs. *Computer Networks*, 152, 40-53.

Slide 7 of 24

- The way channel is accessed may vary according to the policy
 - Static vs Adaptive approaches
- We consider a dynamic policy whereby the maximum possible channel is selected
- Example:

t1: Check channel before transmitting (1:free, 2:busy) t2: Transmit over free channels (1)

Challenges of Channel Bonding

• Trade-off between channel width, data rate, and contention

$$C = B \cdot \log_2(1 + SINR)$$

- Next-generation deployments are complex
 - Crowded
 - Multiple interactions
 - Combinatorial action space

Slide 9 of 24

Slide 10 of 24

Example of Channel Bonding

- Throughput is not x8
- Transmission power is spread across the spectrum

Slide 11 of 24

Komondor Simulator

Slide 13 of 24

Introduction to the Simulator

Konondor (https://github.com/wn-upf/Komondor)

- Written in C/C++
- Characterizes IEEE 802.11 WLANs
- Validated against ns-3 [3]
- Includes novel functionalities such as channel bonding and spatial reuse
- Affordable simulation time
- Particularly oriented to develop AI solutions for WLANs
 - Online learning module (online learning, iterative methods, etc.)
 - Customizable output (generate training datasets)

[3] Barrachina-Muñoz, S., Wilhelmi, F., Selinis, I., & Bellalta, B. (2019, April). Komondor: a wireless network simulator for next-generation high-density WLANs. In 2019 Wireless Days (WD) (pp. 1-8). IEEE.

Slide 14 *of* 24

How was the dataset generated? (I)

Dataset

- Commit: <u>93063aa</u>
- Downlink UDP traffic (different traffic loads considered)
- Duration: 100 seconds
- Random channel allocation, number of nodes, nodes position

Slide 15 of 24

How was the dataset generated? (II)

- 2 scenarios (12 and 8 BSSs)
- 3 map sizes per scenario e.g., (80x60 m, 70x50 m, 60x40 m)
- 50 random deployments per scenario and map size
 - Random number and position of STAs
 - Random channel allocation

Slide 17 of 24

Introduction to the dataset

- Open dataset
- Multiple simulated deployments where CB is applied
 - Input features (nodes position, CB configuration, interference map, etc.)
 - Output performance (throughput)
- Goal: train a model to predict the throughput of BSSs (minimize error)
- Split the dataset into training + validation
- A test dataset will be provided to evaluate your solution
- Solution is open
 - Approach: Deep Learning, linear regression, SVR...
 - Tools: Matlab, Python, R...
- Challenges: understand the problem, process the dataset, define an ML model

Slide 18 of 24

Overview of the dataset

Files (1.7 MB)		~
Name	Size	
input_node_files.zip	1.3 MB	Preview Download
md5:89f241d03f7315c4e8c09bd79d0e2e72 🕜		
output_simulator.zip	412.0 kB	Preview Download
md5:05d50b1ab5409626453216d66ebdc4f9 😮		

Slide 19 of 24

Overview of the dataset (II)

Features

Labels

Slide 20 of 24

Example (I)

Input nodes file: sce1a/input_nodes_sce1a_deployment_000.csv

	A	В	с	D	E	F	G	н	I	J	К	L	м
1	node_code	node_type	wlan_code	x(m)	y(m)	z(m)	central_freq	channel_bon	primary_cha	min_channel	max_channe	tpc_default(cca_default(
2	AP_A	0	Α	10	10	0	5.0	4	4	4	5	20	-82
3	STA_A1	1	Α	0.0713	108.079	0	5.0	4	4	4	5	20	-82
4	STA_A2	1	Α	19.627	41.427	0	5.0	4	4	4	5	20	-82
5	STA_A3	1	Α	137.849	167.538	0	5.0	4	4	4	5	20	-82
6	STA_A4	1	Α	67.112	17.487	0	5.0	4	4	4	5	20	-82
7	STA_A5	1	Α	131.934	23.628	0	5.0	4	4	4	5	20	-82
8	STA_A6	1	Α	176.857	76.662	0	5.0	4	4	4	5	20	-82
9	STA_A7	1	Α	194.473	84.359	0	5.0	4	4	4	5	20	-82
10	STA_A8	1	Α	43.802	20.739	0	5.0	4	4	4	5	20	-82
											_		

Slide 21 of 24

Example (II)

Output Komondor: script_output_sce1a.txt

- KOMONDOR SIMULATION 'sim_input_nodes_sce1a_deployment000.csv' (seed 1992)
- 1. Per-STA throughput (including aggregate in AP) in Mbps (ordered list) [1, #APs+#STAs]
- 2. Airtime per BSS per channel (auxiliary label) [dynamic, #APs]
- 3. RSSI list (APs' own signal marked as Inf) in dBm [#APs, #STAs]
- 4. Interference map (AP-AP interactions) in dBm [#APs, #APs]

Slide 22 of 24

Example (III)

	🦲 😑 🧧	out_sce1a.txt
Scenario ID	KOMONDOR SIMULATION 'sim_input_nodes_sce1a_deployment_000.csv' (seed 1992)	
Throughput per STA	<pre>(111,77,51,79,0111,0191,9199,9144,7129,5100,7130,10191,10105,10120,7193,4100,0139,111.11,011 ,7.53,7.37,2.00,7.99,2.07,4.76,4.99,7.60,1.15,2.38,3.00,4.22,43.05,3.49,1.98,2.46,2.80,3.10 .38,4.53,3.84,6.99,5.91,6.37,1.61,5.61,57.14,7.45,0.69,7.07,5.53,0.08,7.83,0.08,3.38,7.14,2 5,0.54,0.38,7.53,48.08,2.94,1.57,5.68,3.76,4.04,3.63,2.53,4.72,3.66,4.53,1.92,5.15,3.96,90.9 .61,0.23,0.00,0.23,3.07,0.54,0.61,3.30,2.53,0.31,0.84,3.38,185.09,17.89,16.90,16.67,19.28,1 .13,09,11,00,11,67,12,24,11,92,9,46,12,67</pre>	0,10.44,9.23,7.57,0.45,12 ,4.72,4.92,4.30,3.49,4.58, .00,0.00,4.07,0.15,3.38,7. 93,9.37,8.52,9.45,12.52,5. 5.44,16.82,15.67,16.82,4.0
Airtime	{0.11,11.59,19.81,16.46,35.48,0.96,9.88,11.51,22.02,2.24,12.91,0.13}	
RSSI lists	<pre>111, -03.37, -03.35, -01.41, -03.32, -02.42, -01.90, -04.72, -04.90, -30.00, -01.01, -00.94, -00.01, -02. 2.16, Inf, -67.94, -65.62, -64.13, -68.37, -68.18, -55.09, -66.02, -66.43, -58.11, -67.41, -66.83, -61.70 7, -58.02, -59.81, -59.78, -65.31, -53.29, Inf, -61.12, -62.56, -60.28, -63.43, -67.26, -66.15, -66.51, -0 47.70, -60.46, -64.42, -56.19, -68.86, -65.15, -62.06, -69.77, -71.11, -66.60, -64.31, -65.73, -52.91, -0 47.70, -60.46, -64.42, -56.19, -68.86, -65.15, -62.06, -69.77, -71.11, -66.60, -64.31, -65.73, -52.91, -0 69.11, -54.56, Inf, -63.68, -63.52, -58.63, -58.82, -61.61, -60.35, -61.99, -60.93, -64.54, -57.52, -62.7 76, -64.35, -60.08, -65.89, Inf, -58.79, -69.48, -64.61, -70.35, -70.99, -70.10, -61.73, -69.77, -69.29, - 58.94, -67.14, -62.37, -55.71, -57.17, Inf, -49.00, -55.70, -61.54, -48.57, -53.97, -61.43, -53.93, -47</pre>	6, -52, 60, -66, 25, -66, 26, -65 68, 28, -64, 42, -54, 39, -60, 57 69, 58, -70, 72, Inf, -59, 22, -7(13, -56, 31, -64, 42, Inf, -61, 53 -58, 55, -54, 68, -70, 78, -68, 44 , 07, -54, 15, -59, 72, -59, 08, -(
Interference map	<pre>{Int, -/9.34, -103.90, -119.98, -82.35, -94.85, -111.01, -122.95, -103.90, -111.01, -119.82, -130.90; -79.34, Inf, -82.35, -100.95, -91.84, -85.36, -94.85, -105.59, -108.60, -106.97, -108.60, -116.81; -100.95, -79.34, Inf, -79.34, -108.60, -94.85, -85.36, -88.83, -119.82, -111.61, -103.96, -105.59; -119.98, -100.95, -82.35, Inf, -125.96, -111.61, -94.85, -79.34, -133.97, -122.83, -108.60, -100.95; -79.34, -88.83, -108.60, -122.95, Inf, -85.36, -106.97, -119.98, -82.35, -94.85, -108.60, -122.95; -88.83, -79.34, -91.84, -105.59, -82.35, Inf, -85.36, -100.95, -91.84, -85.36, -91.84, -105.59; -105.59, -88.83, -82.35, -88.83, -103.96, -85.36, Inf, -79.34, -108.60, -94.85, -82.35, -88.83; -122.95, -105.59, -91.84, -79.34, -122.99, -106.97, -85.36, Inf, -125.96, -111.61, -91.84, -79.34; -100.95, -105.59, -91.84, -79.34, -122.99, -106.97, -85.36, Inf, -125.96, -111.61, -91.84, -79.34; -100.95, -105.59, -119.82, -130.96, -82.35, -94.85, -111.61, -122.95, Inf, -85.36, -103.96, -119.98; -105.59, -100.95, -108.60, -116.81, -91.84, -85.36, -94.85, -105.59, -82.35, Inf, -82.35, -100.95; -116.81, -105.59, -103.96, -105.59, -108.60, -94.85, -85.36, -88.83, -103.96, -85.36, Inf, -79.34; -130.96, -116.81, -108.60, -100.95, -125.96, -111.61, -94.85, -79.34, -122.99, -106.97, -82.35, Inf}</pre>	

Slide 23 of 24

- 1. Participants must use the provided dataset to **train** a machine learning algorithm.
- 2. The output of the ML algorithm should **predict** the performance obtained in a **new** network deployment.
- 3. The choice of the ML approach is decided by each participant (neural network, linear regression, decision tree, etc.).
- 4. A test dataset will be provided to evaluate the performance of the proposed algorithms.
- 5. The evaluation of the proposed algorithms will be based on the average squared-root error obtained along with all the predictions compared to the actual result in each type of deployment.
- 6. The solution should be properly justified and participants must provide insights on the pros/cons of applying AI to solve the CB problem in WLANs
- 7. The winners will be invited to publish the results in an academic publication.

ITUEvents

ITU-ML5G-PS-018: DNN Inference Optimization Challenge (Adlik/ZTE) 17 July 2020

ITU AI/ML in 5G Challenge

Applying machine learning in communication networks

ai5gchallenge@itu.int

Sponsors

Register <u>here</u> Join us on <u>Slack</u>